34,263 research outputs found

    Ultrathin Amorphous Silica Membrane Enhances Proton Transfer across Solid-to-Solid Interfaces of Stacked Metal Oxide Nanolayers while Blocking Oxygen

    Get PDF
    A large jump of proton transfer rates across solid-to-solid interfaces by inserting an ultrathin amorphous silica layer into stacked metal oxide nanolayers is discovered using electrochemical impedance spectroscopy and Fourier-transform infrared reflection absorption spectroscopy (FT-IRRAS). The triple stacked nanolayers of Co3O4, SiO2, and TiO2 prepared by atomic layer deposition (ALD) enable a proton flux of 2400 ± 60 s−1 nm−2 (pH 4, room temperature), while a single TiO2 (5 nm) layer exhibits a threefold lower flux of 830 s−1 nm−2. Based on FT-IRRAS measurements, this remarkable enhancement is proposed to originate from the sandwiched silica layer forming interfacial SiOTi and SiOCo linkages to TiO2 and Co3O4 nanolayers, respectively, with the O bridges providing fast H+ hopping pathways across the solid-to-solid interfaces. Together with the complete O2 impermeability of a 2 nm ALD-grown SiO2 layer, the high flux for proton transport across multi-stack metal oxide layers opens up the integration of incompatible catalytic environments to form functional nanoscale assemblies such as artificial photosystems for CO2 reduction by H2O

    Relevance of Abelian Symmetry and Stochasticity in Directed Sandpiles

    Full text link
    We provide a comprehensive view on the role of Abelian symmetry and stochasticity in the universality class of directed sandpile models, in context of the underlying spatial correlations of metastable patterns and scars. It is argued that the relevance of Abelian symmetry may depend on whether the dynamic rule is stochastic or deterministic, by means of the interaction of metastable patterns and avalanche flow. Based on the new scaling relations, we conjecture critical exponents for avalanche, which is confirmed reasonably well in large-scale numerical simulations.Comment: 4 pages, 3 figures; published versio

    Sedentary behaviors and adiposity in young people: causality and conceptual model

    Get PDF
    Research on sedentary behavior and adiposity in youth dates back to the 1980s. Sedentary behaviors, usually screen time, can be associated with adiposity. Although the association usually is small but significant, the field is complex, and results are dependent on what sedentary behaviors are assessed and may be mediated and moderated by other behaviors

    Constraining GPDs at Jefferson Lab

    Get PDF
    Generalized parton distributions (GPDs) are nowadays the object of an intense effort of research. Among other aspects, they allow to unravel the correlation between the longitudinal momentum fraction and the transverse spatial distributions of quarks and gluons inside the nucleon, with the prospect of accessing the angular momentum contribution of the partons to the nucleon’s spin. The Hall A and CLAS Collaborations of Jefferson Lab, or JLab, play a key role in the extraction of GPDs from deeply virtual Compton scattering (DVCS) and from deeply virtual meson production (DVMP). This topic is at the heart of the physics program for the upcoming JLab machine upgrade to 12 GeV. This report presents an overview (with a large focus on DVCS) of published results and ongoing analyses from JLab 6GeV data, and future experiments planned at JLab 12GeV, in Hall A and with the future CLAS12 detector in Hall B

    Universality classes and crossover behaviors in non-Abelian directed sandpiles

    Full text link
    We study universality classes and crossover behaviors in non-Abelian directed sandpile models, in terms of the metastable pattern analysis. The non-Abelian property induces spatially correlated metastable patterns, characterized by the algebraic decay of the grain density along the propagation direction of an avalanche. Crossover scaling behaviors are observed in the grain density due to the interplay between the toppling randomness and the parity of the threshold value. In the presence of such crossovers, we show that the broadness of the grain distribution plays a crucial role in resolving the ambiguity of the universality class. Finally, we claim that the metastable pattern analysis is important as much as the conventional analysis of avalanche dynamics.Comment: 10 pages, 7 figures, 1 table; published in PRE as the full paper of PRL v101, 218001 (2008

    Food insecurity in veteran households: findings from nationally representative data

    Full text link
    OBJECTIVE: The present study is the first to use nationally representative data to compare rates of food insecurity among households with veterans of the US Armed Forces and non-veteran households. DESIGN: We used data from the 2005-2013 waves of the Current Population Survey - Food Security Supplement to identify rates of food insecurity and very low food security in veteran and non-veteran households. We estimated the odds and probability of food insecurity in veteran and non-veteran households in uncontrolled and controlled models. We replicated these results after separating veteran households by their most recent period of service. We weighted models to create nationally representative estimates. SETTING: Nationally representative data from the 2005-2013 waves of the Current Population Survey - Food Security Supplement. SUBJECTS: US households (n 388 680). RESULTS: Uncontrolled models found much lower rates of food insecurity (8·4 %) and very low food security (3·3 %) among veteran households than in non-veteran households (14·4 % and 5·4 %, respectively), with particularly low rates among households with older veterans. After adjustment, average rates of food insecurity and very low food security were not significantly different for veteran households. However, the probability of food insecurity was significantly higher among some recent veterans and significantly lower for those who served during the Vietnam War. CONCLUSIONS: Although adjusting eliminated many differences between veteran and non-veteran households, veterans who served from 1975 and onwards may be at higher risk for food insecurity and should be the recipients of targeted outreach to improve nutritional outcomes

    Assessment of Climate Events in Changma Season (Korean Monsoon) for Production Trend of Sorghum-Sudangrass Hybrid (\u3ci\u3eSorghum bicolor\u3c/i\u3e L.) in the Central Inland Regions of Korea Using Time Series Analysis

    Get PDF
    This study aimed to assess the impact of climate events in the Changma (Korean Monsoon) season on the production trend of sorghum-sudangrass hybrid (SSH) in central inland regions using time series analysis. The dataset in Suwon from 1988–2013 (n = 388) was generated by merging SSH data and climate data. The accumulated temperature (SHAT, ℃), rainfall amount (SHRA, mm) and sunshine duration (SHSD, hr) from seeding to harvesting were used to assess their impact on the trend of dry matter yield (DMY, kg/ha) for SSH. Furthermore, heavy rainfall (HRF) and typhoons (TPH) were considered as climate events. As a result, the impact of climate events did not affect DMY, even though the frequency and intensity of HRF increased. Conversely, SHAT and SHRA had positive and negative effects on the trend of DMY, respectively. Therefore, the DMY trend of SSH was forecasted to increase until 2045, unlike maize, which has shown a declining trend. The forecasted DMY in 2045 was 14,926 kg/ha. It is likely that the damage by heavy rainfall and typhoons was reduced due to multiple-harvesting and a deeper extension of the root system. Therefore, in an environment that is rapidly changing due to climate change and abnormal weather, such as the Changma season, the cultivation of SSH would be advantageous as it would ensure a stable and robust yield

    Assessment of Causality between Climate Variables and Production for Whole Crop Maize Using Structural Equation Modeling

    Get PDF
    This study aimed to assess the causality of different climate variables on the production of whole crop maize silage (Zea mays L.; WCM) in the central inland region of the Republic of Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration’s reports of new variety adaptability from 1985‒2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration’s weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively
    • 

    corecore